

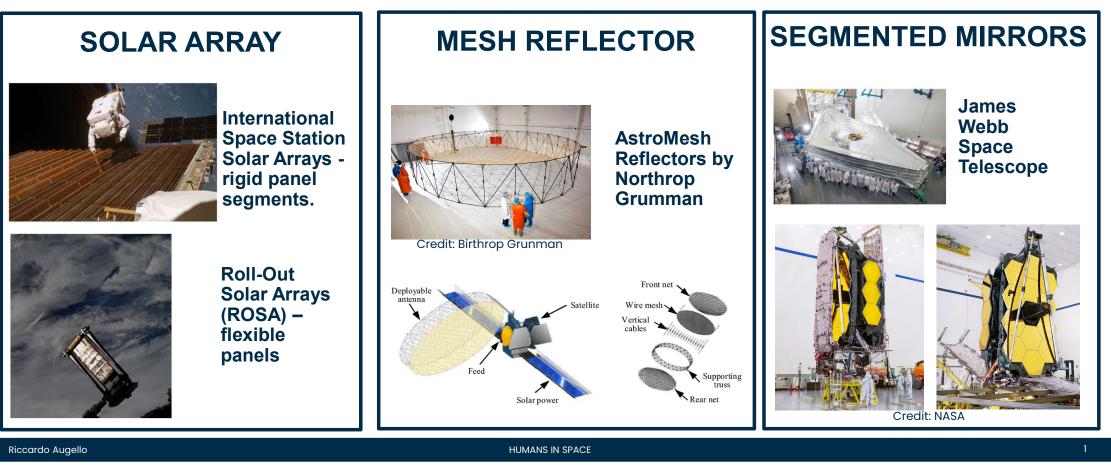
## Deployable and Inflatable Structures: New Frontiers for Space Exploration, Astronomical Observation, and the Development of Advanced Technologies

Riccardo Augello

Mul2 Lab, Politecnico di Torino

HUMANS IN SPACE

8 Apr 2025

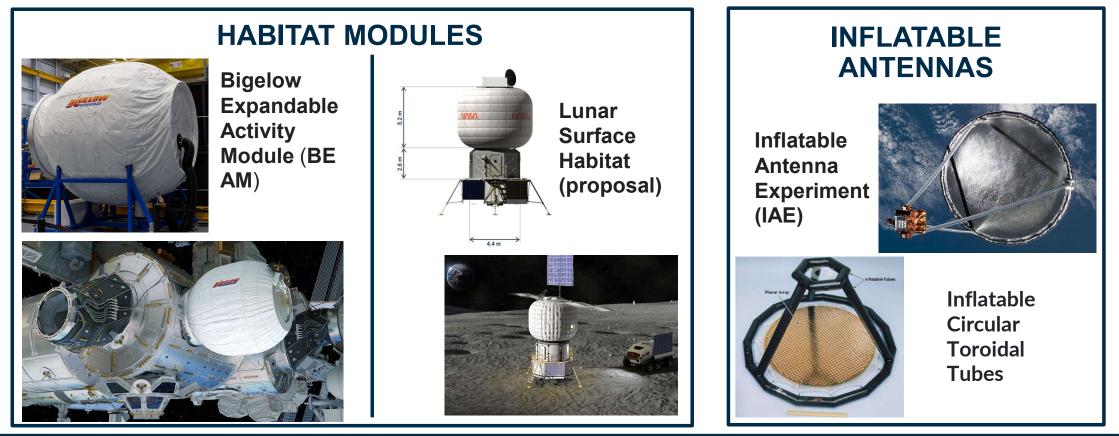

Scuola Politecnica e delle Scienze di Base – P.le Tecchio

### AIDAA+ **MUE**



## What Do We Mean by "Deployable"?

**Deployables**: structures that can be packaged and then extended or opened once they reach their designed in-orbit dimensions.




### AIDAA+ MUP



### What Do We Mean by "Inflatable"?

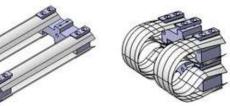
**Inflatable**: Structures that require inflation with a fluid (usually a gas) to achieve their final shape. Typically made from high-strength polymer materials, with thermal and debris protection layers.



Riccardo Augello

HUMANS IN SPACE

# Common features and key differences


- Both aim to dramatically reduce launch mass and volume
- They change configuration after launch: from compact to extended (deployable) or inflated (inflatable).
- Both require rigorous testing for resilience and reliability in the extreme space environment.

#### **Differences**

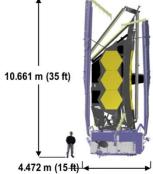
- Activation mechanism:
  - Deployable: mechanical mechanisms.
  - Inflatable: inflation with gas and pressure containment systems.

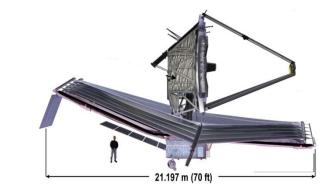
#### • Final structure:

- > Deployable: generally, stiffer once extended.
- > Inflatable: usually more "flexible" (though hybrids with rigid reinforcements exist), often pressurized.
- Associated Risks:
  - Deployable: mechanical parts can jam or fail to deploy.
  - Inflatable: potential gas leaks, micro-tears, managing internal pressure.








### Why Inflatable and Deployable Structures?

#### **Reduced Launch Volume**:

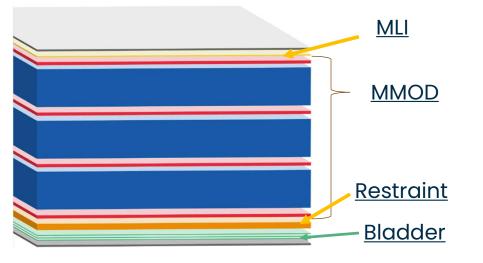
 Inflatable and foldable components can be "packed" into a much smaller volume compared to fully rigid structures.





#### Lower Overall Mass

- Flexible materials often weigh less than metal equivalents.
- Mechano-deployable systems can eliminate heavy support structures.
- Every kilogram saved reduces launch costs significantly (some agencies quote \$10,000-\$20,000 per kg to LEO, depending on the launcher).


#### **Ease and Speed of Deployment**

- Once in orbit, a mechanism to inflate or unfold can quickly bring the structure to full operational form.
- Reduced complexity for ground crews or astronauts.

### **Enabling More Ambitious Missions**



### **Key Materials and Their Importance**



#### High-Strength Fabrics (e.g., Kevlar, Vectran)

- High tensile strength, good puncture resistance, relatively low mass.
- NASA/Bigelow's BEAM module uses Vectran layers as part of its micrometeoroid and orbital debris (MMOD) shield.

#### Polymer Films (e.g., Mylar, Kapton)

- Lightweight, can handle extreme temperature variations, often used as reflective or insulating surfaces.
- Lining or layering for inflatable antennas, sunshields, thermal control surfaces (e.g., James Webb's sunshield uses Kapton).



• Very high stiffness-to-weight ratio, can be molded into complex shapes.

#### **Metal Alloys and Articulated Joints**

• Aluminum or titanium alloys for hinges, brackets, or structural interfaces.

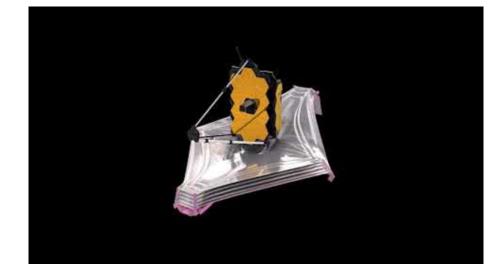






### Mechanisms of Deployment: From Stowed to Operational

#### **Mechanical Deployment Methods**


- Hinges, springs, motorized arms, telescoping booms.
- Energy stored in tapes or rods that "unfurl" in microgravity.

#### **Inflation Processes**

- Gas canisters, pumps, or in-situ resource usage.
- Importance of controlled pressurization to avoid rapid expansion or structural damage.

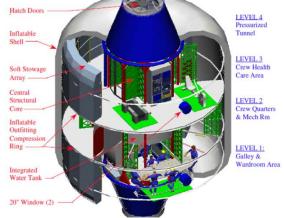
#### Self-Deployment

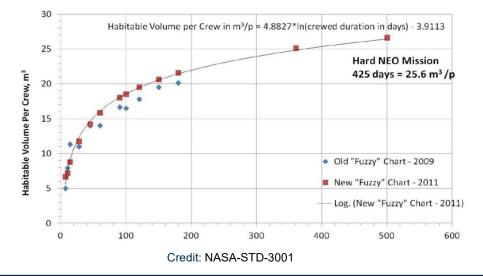
 Systems that naturally open when released from constraints (e.g., coiled booms that uncoil once a latch is removed).



See attached File "Video HUMANS IN SPACE - Augello 08\_04\_25" Slide n. 2

#### Locking / Latching Mechanisms


Once deployed, mechanical "locks" or tension cables hold the structure rigidly.


#### **Risks and Failures**

 Potential for jammed hinges or stuck segments. Incorrect inflation pressure leading to material stress or leaks.



### Inflatable Habitats for Orbital and Planetary Missions

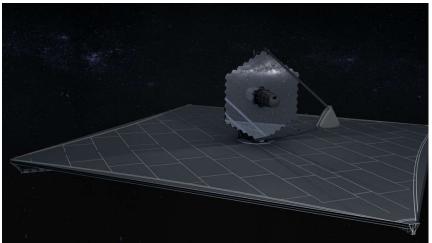




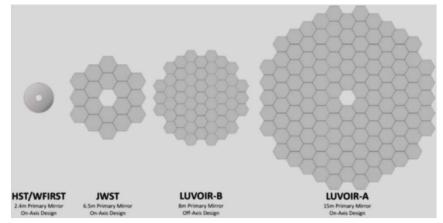
#### Why are they needed?

- To maximize usable volume while minimizing launch mass and stowed volume.
- To lower transportation costs and expand potential crew or cargo capacity.

#### What is an inflatable habitat?


- A pressurizable volume that starts off in a compact shape and inflates to provide living or working space for astronauts.
- Utilizes advanced fabrics, multi-layer insulation (MLI), and structural restraints to create a safe internal environment.

#### Challenges


- Atmospheric leakage, micro-meteoroid punctures, ensuring safe pressure containment.
- Internal environment control (air quality, temperature).
- Systems must quickly identify and patch leaks if the module is punctured.



### Deployable Structures for Telescopes and Antennas



Credit: NASA



#### **Importance of Large Aperture**

- Bigger collecting area for light or radio waves = more sensitive observations.
- Launch vehicle constraints make large deployable designs essential.

#### **Foldable Mirrors**

- JWST as a prime example of segmented mirror deployment.
- Ongoing/next-gen concepts (e.g., LUVOIR, Origins Space Telescope).

#### **Mesh Antennas**

- Used in high-frequency communication or radio astronomy satellites.
- Deployed from a stowed "drum" or canister.

#### **Precision and Alignment**

- The necessity of extremely tight tolerances for optical surfaces.
- Active control systems (actuators) to fine-tune alignment postdeployment.

### Deployable and Inflatable Concepts for Lunar and Martian Missions

#### **Planetary Rovers with Deployable Components**

- Inflatable Wheels or suspensions for rough terrain (NASA or ESA concept studies).
- Fold-out Solar Panels or communication antennas to minimize stowed volume during transit.

#### **Surface Habitats**

- Inflatable Lunar or Martian Modules:
  - Could be lightweight and compact during transit.
  - Then inflated on the surface, possibly covered with regolith for extra radiation shielding

#### Advantages in Low Gravity

- Eases deployment and reduces stress on inflated walls or mechanical joints.
- Materials still must handle wide temperature extremes (lunar day/night cycles or Martian seasons).

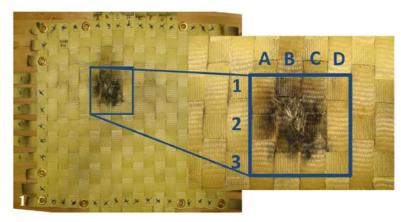
#### Challenges

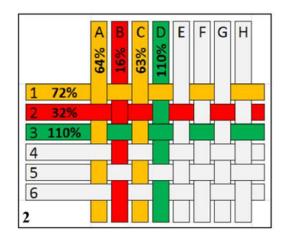
Dust Abrasion, Thermal Extremes, Atmospheric Pressure, Radiation.



Politecnico

Credit: ESA





Credit: NASA

ltech



### Challenge #1: Structural Integrity & Impact Resistance





#### **Environmental Hazards in Space**

- Micro-meteoroids, debris traveling at high velocities.
- Erosion effects from atomic oxygen in LEO.

#### **Material Layers**

- Multiple layers of fabric (Kevlar/Vectran) and advanced composites to absorb impacts.
- Concept of "whipple shields."

#### **Testing for Impact**

- Hypervelocity impact tests to simulate collisions with small debris.
- How test results drive thickness or multi-layer designs.

#### **Reliability and Redundancy**

- If an outer layer is punctured, inner layers remain intact.
- Leak detection and repair strategies.

#### Inflatable vs. Deployable

- Inflatable: risk of depressurization if punctured.
- Deployable: rigid or semi-rigid once deployed, but still susceptible to structural damage.



### Challenge #2: Extreme Temperatures & Radiation

#### **Temperature Extremes**

- In direct sunlight vs. in shadow
- Mars or lunar surface environment is also extreme

#### **Thermal Insulation Strategies**

- Multi-Layer Insulation (MLI) blankets.
- Reflective coatings (Kapton, Mylar).
- Active thermal control (heaters, radiators).

#### **Radiation Hazards**

- Cosmic rays, solar particle events.
- Need for thick or specialized materials to shield inhabitants (particularly for crewed missions).

#### Inflatable Module Solutions

- Some setups incorporate hydrogen-rich materials (e.g., polyethylene) in walls to reduce radiation.
- Potential layering with water or regolith in planetary habitats.

#### **Monitoring and Redundancy**

- Sensor arrays to continuously check internal temperature and radiation levels.
- Contingency measures for solar flares (storm shelters).



# Challenge #3: Achieving Stability and Rigidity

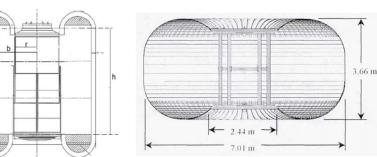
#### Vibrations and Oscillations

Launch vibrations or micro-vibrations during operation (e.g., from attitude control thrusters).

#### Methods to Increase Rigidity

- Rigidizing materials (composites that harden after deployment).
- Tension cables or internal pressurized ribs.
- Hybrid designs (inflatable + support trusses).

#### **Structural Analysis**


- Finite Element Modeling (FEM) used to predict stress/strain.
- Testing in microgravity simulations or parabolic flights.

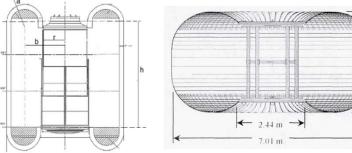
#### **Real-Time Control**

Active damping systems, sensors that adjust tension or orientation.

#### **Trade-Offs**

- More rigidity often means heavier or more complex structures.
- Inflatable solutions must keep pressure stable to maintain shape.




Politecnico

Torino

Caltech

#### Preliminary sizing







## Validation & Testing: Ensuring Reliability Before Launch

#### Vacuum Chambers & Thermal-Vac Testing

- Simulating vacuum and temperature extremes.
- Checking for leaks or material failures.

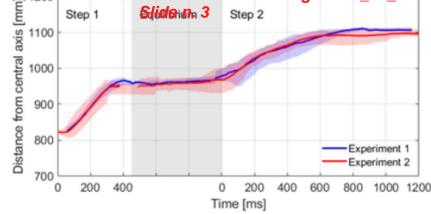
#### **Vibration and Acoustic Tests**

- Replicate launch conditions: high acoustic loads, intense vibration.
- Ensure stowed structure survives liftoff.

#### **Deployment Testing**

- Multiple cycles of folding/unfolding or inflating/deflating.
- Checking mechanical joints, tear points.

#### **Microgravity Simulations**


- Parabolic flights or neutral buoyancy facilities for partial testing.
- Some aspects are still "best guess" until real in-orbit demonstration.

#### **Prototyping and Iteration**

- Rapid prototyping with updated materials or designs.
- Multiple test campaigns to achieve flight qualification.







## Case Study: Bigelow's BEAM on the ISS

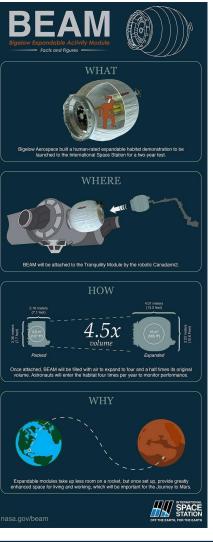
#### **Overview**

- Launched in 2016 to the ISS via SpaceX CRS-8.
- Primary goal: test structural integrity, thermal performance, radiation shielding, and long-term leak rates.

#### **Deployment Process**

- Slowly inflated while attached to the ISS.
- Astronauts monitored internal pressure




See attached File "Video HUMANS IN SPACE - Augello 08\_04\_25" Slide n. 4

#### **Test Results**

- So far, good performance: minimal leaks, stable temperature.
- Data on micrometeoroid impacts: no critical damage reported.

#### **Habitable Volume**

Offers 16 m<sup>3</sup> (approx.) of internal volume, used for stowage and occasional crew visits.



Caltech

Politecnico di Torino



## Case Study: JWST's Deployable Mirror and Sunshield

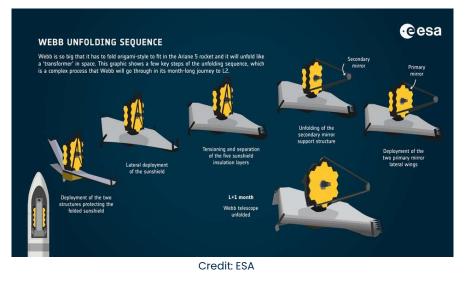
#### **Mission Overview**

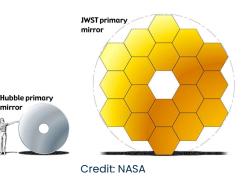
- Launched December 2021, orbit at L2.
- 6.5-meter segmented mirror + five-layer sunshield.

#### **Mirror Deployment**

- 18 hexagonal segments folded inside Ariane 5 fairing.
- Step-by-step unfolding, alignment using actuators.

#### Sunshield


- Large kapton layers folded multiple times.
- Tensioned in orbit to maintain shape and thermal separation.


#### **Risk Management**

- Over 300 single-point failure items.
- Redundant motors, cables, latches.

#### **Achievements**

- Successfully deployed, now delivering groundbreaking infrared images.
- Demonstrates feasibility of extremely large, complex deployable structures.









#### **NASA Programs**

NextSTEP habitat prototypes, inflatable airlocks, advanced deployable solar arrays.

#### **ESA Efforts**

 Large Deployable Antenna (LDA) initiatives, Moon Village concepts using inflatable modules.

#### **Private Ventures**

 Bigelow Aerospace expansions, Sierra Nevada Corporation's inflatable designs, Nanoracks' outpost concepts.

#### **International Collaborations**

 Joint missions focusing on large radio telescopes or habitats for Gateway, future lunar bases.

#### Key Technology Gaps

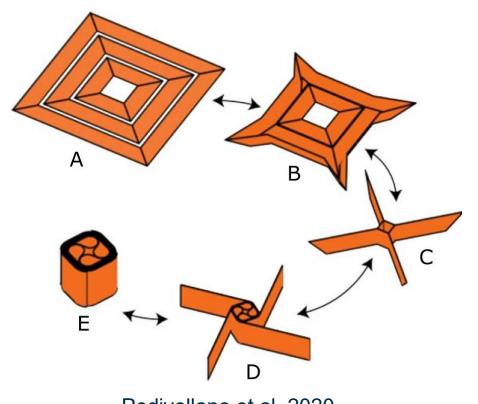
 Materials that self-heal, advanced sensors, robotic assembly in orbit, and more cost-efficient large-scale manufacturing.



Credit: NASA




Credit: ESA

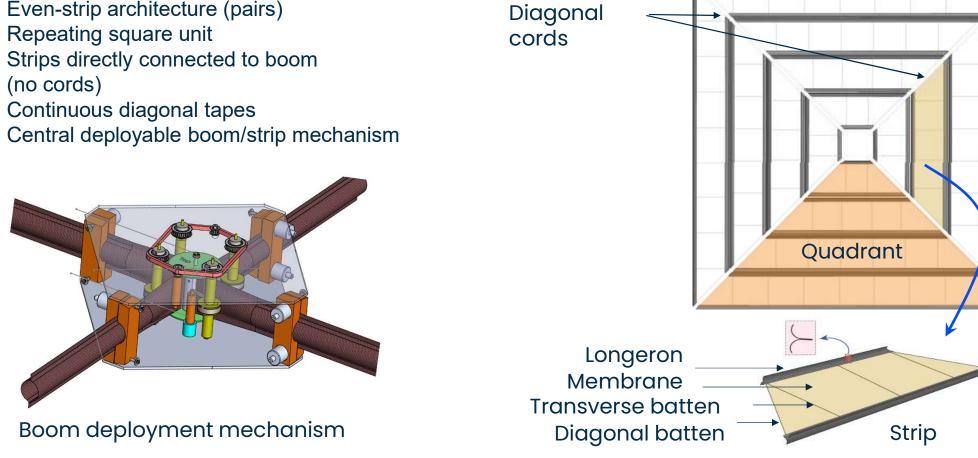





### Project Background: SSPP Structure

- Solution for harvesting solar energy in space
- Collects sunlight and wirelessly transmits power to Earth






Packaging concept

Pedivellano et al. 2020

HUMANS IN SPACE

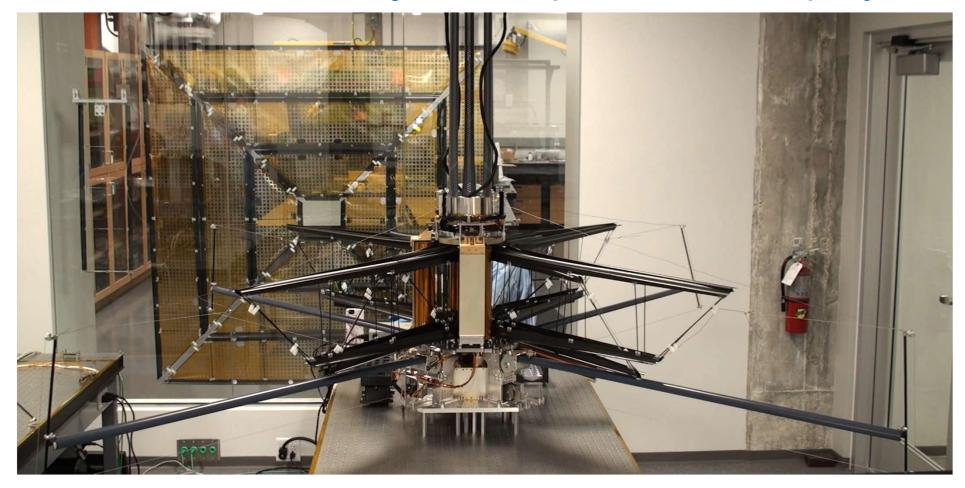
18



HUMANS IN SPACE

# **SSPP** Structure

- Even-strip architecture (pairs)
- Repeating square unit
- Strips directly connected to boom (no cords)
- Central deployable boom/strip mechanism


AIDAA+ MUE







### Space Solar Power Project – experimental deployment



HUMANS IN SPACE



### **Final Reflections & Next Steps**

- <u>Recap of Main Advantages</u>: Low mass, compact stowage, rapid deployment, cost-effectiveness.
- > <u>Diverse Applications</u>: Habitats, antennas, telescopes, rovers, terrestrial spin-offs.
- > <u>Challenges</u>: Impact resistance, thermal/radiation shielding, stability, robust deployment mechanisms.
- > <u>Ongoing Projects</u>: BEAM, JWST, plus numerous R&D initiatives.
- > <u>Significance</u>: These technologies are enabling more ambitious missions and new commercial opportunities.

#### **Future Opportunities**

- Innovations in materials science, robotics, and partial ISRU.
- Potential for synergy with commercial space stations and lunar gateway.
- Demand for new skill sets in inflatable design, advanced simulation, structural testing, etc.
- Encouraging students and professionals to get involved.

## **QUESTIONS?**



## Deployable and Inflatable Structures: New Frontiers for Space Exploration, Astronomical Observation, and the Development of Advanced Technologies

Riccardo Augello

Mul2 Lab, Politecnico di Torino

HUMANS IN SPACE

8 Apr 2025

Scuola Politecnica e delle Scienze di Base – P.le Tecchio