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What Do We Mean by “Deployable”?
Deployables: structures that can be packaged and then extended or opened once they reach their 
designed in-orbit dimensions.

International 
Space Station 
Solar Arrays -
rigid panel 
segments.

Roll-Out 
Solar Arrays 
(ROSA) –
flexible 
panels 

SOLAR ARRAY MESH REFLECTOR

AstroMesh
Reflectors by 
Northrop 
Grumman

SEGMENTED MIRRORS

James 
Webb 
Space 
Telescope

Credit: Birthrop Grunman

Credit: NASA
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What Do We Mean by “Inflatable”?
Inflatable: Structures that require inflation with a fluid (usually a gas) to achieve their final shape. 
Typically made from high-strength polymer materials, with thermal and debris protection layers.

HABITAT MODULES INFLATABLE 
ANTENNASBigelow 

Expandable 
Activity 
Module (BE
AM)

Lunar 
Surface 
Habitat
(proposal)

Inflatable
Antenna 
Experiment 
(IAE)

Inflatable
Circular
Toroidal
Tubes
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Common features and key differences
• Both aim to dramatically reduce launch mass and volume

• They change configuration after launch: from compact to extended (deployable) or inflated (inflatable).

• Both require rigorous testing for resilience and reliability in the extreme space environment.

Differences

• Activation mechanism:

 Deployable: mechanical mechanisms.

 Inflatable: inflation with gas and pressure containment systems.

• Final structure:

 Deployable: generally, stiffer once extended.

 Inflatable: usually more “flexible” (though hybrids with rigid reinforcements exist), often pressurized.

• Associated Risks:

 Deployable: mechanical parts can jam or fail to deploy.

 Inflatable: potential gas leaks, micro-tears, managing internal pressure.
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Why Inflatable and Deployable Structures?
Reduced Launch Volume:

 Inflatable and foldable components
can be “packed” into a much smaller
volume compared to fully rigid
structures.

Lower Overall Mass
 Flexible materials often weigh less than metal equivalents.
 Mechano-deployable systems can eliminate heavy support structures.
 Every kilogram saved reduces launch costs significantly (some agencies quote $10,000–$20,000 per kg to 

LEO, depending on the launcher).

Ease and Speed of Deployment
 Once in orbit, a mechanism to inflate or unfold can quickly bring the structure to full operational form. 
 Reduced complexity for ground crews or astronauts.

Enabling More Ambitious Missions
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Key Materials and Their Importance

Composites (Carbon Fiber, Glass Fiber)
• Very high stiffness-to-weight ratio, can be molded 

into complex shapes.

Metal Alloys and Articulated Joints
• Aluminum or titanium alloys for hinges, brackets, or 

structural interfaces. 

High-Strength Fabrics (e.g., Kevlar, Vectran) 
• High tensile strength, good puncture resistance, relatively low 

mass.
• NASA/Bigelow’s BEAM module uses Vectran layers as part of 

its micrometeoroid and orbital debris (MMOD) shield.

Polymer Films (e.g., Mylar, Kapton)
• Lightweight, can handle extreme temperature variations, often 

used as reflective or insulating surfaces.
• Lining or layering for inflatable antennas, sunshields, thermal 

control surfaces (e.g., James Webb’s sunshield uses Kapton).

MMOD

Restraint

Bladder

MLI
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Mechanisms of Deployment: From Stowed to Operational
Mechanical Deployment Methods
 Hinges, springs, motorized arms, telescoping booms.
 Energy stored in tapes or rods that “unfurl” in microgravity.

Inflation Processes
 Gas canisters, pumps, or in-situ resource usage.
 Importance of controlled pressurization to avoid rapid 

expansion or structural damage.

Self-Deployment
 Systems that naturally open when released from 

constraints (e.g., coiled booms that uncoil once a latch is 
removed).

Locking / Latching Mechanisms
• Once deployed, mechanical “locks” or tension cables hold the structure rigidly.

Risks and Failures
• Potential for jammed hinges or stuck segments.Incorrect inflation pressure leading to material stress or 

leaks.

oscar
Typewriter
See attached File "Video HUMANS IN SPACE - Augello 08_04_25"

Slide n. 2
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Inflatable Habitats for Orbital and Planetary Missions
Why are they needed?
 To maximize usable volume while minimizing launch 

mass and stowed volume.
 To lower transportation costs and expand potential 

crew or cargo capacity.

What is an inflatable habitat?
 A pressurizable volume that starts off in a compact 

shape and inflates to provide living or working space 
for astronauts.

 Utilizes advanced fabrics, multi-layer insulation (MLI), 
and structural restraints to create a safe internal 
environment.

Challenges
 Atmospheric leakage, micro-meteoroid punctures, 

ensuring safe pressure containment.
 Internal environment control (air quality, temperature).
 Systems must quickly identify and patch leaks if the 

module is punctured.
Credit: NASA-STD-3001
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Deployable Structures for Telescopes and Antennas
Importance of Large Aperture
 Bigger collecting area for light or radio waves = more sensitive 

observations.
 Launch vehicle constraints make large deployable designs 

essential.

Foldable Mirrors
 JWST as a prime example of segmented mirror deployment.
 Ongoing/next-gen concepts (e.g., LUVOIR, Origins Space 

Telescope).

Mesh Antennas
 Used in high-frequency communication or radio astronomy 

satellites.
 Deployed from a stowed “drum” or canister.

Precision and Alignment
 The necessity of extremely tight tolerances for optical surfaces.
 Active control systems (actuators) to fine-tune alignment post-

deployment.

Credit: NASA
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Deployable and Inflatable Concepts for Lunar and Martian Missions
Planetary Rovers with Deployable Components
 Inflatable Wheels or suspensions for rough terrain (NASA or ESA concept 

studies).
 Fold-out Solar Panels or communication antennas to minimize stowed 

volume during transit.

Surface Habitats
 Inflatable Lunar or Martian Modules:

 Could be lightweight and compact during transit.
 Then inflated on the surface, possibly covered with regolith for extra 

radiation shielding

Advantages in Low Gravity
 Eases deployment and reduces stress on inflated walls or mechanical 

joints.
 Materials still must handle wide temperature extremes (lunar day/night 

cycles or Martian seasons).

Challenges
 Dust Abrasion, Thermal Extremes, Atmospheric Pressure, Radiation. 

Credit: NASA

Credit: ESA
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Challenge #1: Structural Integrity & Impact Resistance
Environmental Hazards in Space
 Micro-meteoroids, debris traveling at high velocities.
 Erosion effects from atomic oxygen in LEO.

Material Layers
 Multiple layers of fabric (Kevlar/Vectran) and advanced 

composites to absorb impacts.
 Concept of “whipple shields.”

Testing for Impact
 Hypervelocity impact tests to simulate collisions with small debris.
 How test results drive thickness or multi-layer designs.

Reliability and Redundancy
 If an outer layer is punctured, inner layers remain intact.
 Leak detection and repair strategies.

Inflatable vs. Deployable
 Inflatable: risk of depressurization if punctured.
 Deployable: rigid or semi-rigid once deployed, but still susceptible 

to structural damage.
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Challenge #2: Extreme Temperatures & Radiation
Temperature Extremes
 In direct sunlight vs. in shadow 
 Mars or lunar surface environment is also extreme

Thermal Insulation Strategies
 Multi-Layer Insulation (MLI) blankets.
 Reflective coatings (Kapton, Mylar).
 Active thermal control (heaters, radiators).

Radiation Hazards
 Cosmic rays, solar particle events.
 Need for thick or specialized materials to shield inhabitants (particularly for crewed missions).

Inflatable Module Solutions
 Some setups incorporate hydrogen-rich materials (e.g., polyethylene) in walls to reduce radiation.
 Potential layering with water or regolith in planetary habitats.

Monitoring and Redundancy
 Sensor arrays to continuously check internal temperature and radiation levels.
 Contingency measures for solar flares (storm shelters).
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Challenge #3: Achieving Stability and Rigidity
Vibrations and Oscillations
 Launch vibrations or micro-vibrations during operation (e.g., from attitude control thrusters).

Methods to Increase Rigidity
 Rigidizing materials (composites that harden after deployment).
 Tension cables or internal pressurized ribs.
 Hybrid designs (inflatable + support trusses).

Structural Analysis
 Finite Element Modeling (FEM) used to predict stress/strain.
 Testing in microgravity simulations or parabolic flights.

Real-Time Control
 Active damping systems, sensors that adjust tension or orientation.

Trade-Offs
 More rigidity often means heavier or more complex structures.
 Inflatable solutions must keep pressure stable to maintain shape.

Preliminary sizing 

Numerical simulations (FEM) 
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Validation & Testing: Ensuring Reliability Before Launch
Vacuum Chambers & Thermal-Vac Testing
 Simulating vacuum and temperature extremes.
 Checking for leaks or material failures.

Vibration and Acoustic Tests
 Replicate launch conditions: high acoustic loads, intense vibration.
 Ensure stowed structure survives liftoff.

Deployment Testing
 Multiple cycles of folding/unfolding or inflating/deflating.
 Checking mechanical joints, tear points.

Microgravity Simulations
 Parabolic flights or neutral buoyancy facilities for partial testing.
 Some aspects are still “best guess” until real in-orbit demonstration.

Prototyping and Iteration
 Rapid prototyping with updated materials or designs.
 Multiple test campaigns to achieve flight qualification.

oscar
Typewriter
See attached File "Video HUMANS IN SPACE - Augello 08_04_25"
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Case Study: Bigelow’s BEAM on the ISS

Test Results
 So far, good performance: minimal leaks, stable temperature.
 Data on micrometeoroid impacts: no critical damage reported.

Habitable Volume
 Offers 16 m³ (approx.) of internal volume, used for stowage and occasional crew visits.

Overview
 Launched in 2016 to the ISS via 

SpaceX CRS-8.
 Primary goal: test structural integrity, 

thermal performance, radiation 
shielding, and long-term leak rates.

Deployment Process
 Slowly inflated while attached to the 

ISS.
 Astronauts monitored internal pressure

Credit: NASA TV

oscar
Typewriter
See attached File "Video HUMANS IN SPACE - Augello 08_04_25"
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Case Study: JWST’s Deployable Mirror and Sunshield
Mission Overview
 Launched December 2021, orbit at L2.
 6.5-meter segmented mirror + five-layer sunshield.

Mirror Deployment
 18 hexagonal segments folded inside Ariane 5 fairing.
 Step-by-step unfolding, alignment using actuators.

Sunshield
 Large kapton layers folded multiple times.
 Tensioned in orbit to maintain shape and thermal separation.

Risk Management
 Over 300 single-point failure items.
 Redundant motors, cables, latches.

Achievements
 Successfully deployed, now delivering groundbreaking infrared images.
 Demonstrates feasibility of extremely large, complex deployable structures.

Credit: ESA

Credit: NASA
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Current R&D and Emerging Projects
NASA Programs
 NextSTEP habitat prototypes, inflatable airlocks, advanced 

deployable solar arrays.

ESA Efforts
 Large Deployable Antenna (LDA) initiatives, Moon Village 

concepts using inflatable modules.

Private Ventures
 Bigelow Aerospace expansions, Sierra Nevada 

Corporation’s inflatable designs, Nanoracks’ outpost 
concepts.

International Collaborations
 Joint missions focusing on large radio telescopes or habitats 

for Gateway, future lunar bases.

Key Technology Gaps
 Materials that self-heal, advanced sensors, robotic assembly 

in orbit, and more cost-efficient large-scale manufacturing.

Credit: NASA

Credit: ESA
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Project Background: SSPP Structure
Packaging concept• Solution for harvesting solar energy in space

• Collects sunlight and wirelessly transmits power to 
Earth

Pedivellano et al. 2020
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Longeron

Transverse batten
Diagonal batten Strip

Membrane

1 8

SSPP Structure

Diagonal 
cords

Quadrant

Boom deployment mechanism

 Even-strip architecture (pairs)
 Repeating square unit
 Strips directly connected to boom 

(no cords)
 Continuous diagonal tapes
 Central deployable boom/strip mechanism
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Space Solar Power Project – experimental deployment
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Final Reflections & Next Steps
 Recap of Main Advantages: Low mass, compact stowage, rapid deployment, cost-effectiveness.

 Diverse Applications: Habitats, antennas, telescopes, rovers, terrestrial spin-offs.

 Challenges: Impact resistance, thermal/radiation shielding, stability, robust deployment mechanisms.

 Ongoing Projects: BEAM, JWST, plus numerous R&D initiatives.

 Significance: These technologies are enabling more ambitious missions and new commercial opportunities.

Future Opportunities

 Innovations in materials science, robotics, and partial ISRU.

 Potential for synergy with commercial space stations and lunar gateway.

 Demand for new skill sets in inflatable design, advanced simulation, structural testing, etc.

 Encouraging students and professionals to get involved.

QUESTIONS?
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